\qquad

C.U.SHAH UNIVERSITY

Winter Examination-2015

Subject Name : Design of Concrete Structure
Subject Code : 2TE05DCS1
Branch : Diploma (Civil)
Semester : 5 Date : 02/12/2015 Time : 2:30 To 5:30 Marks : 70
Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Q-1
 Attempt the following questions:

a) In singly reinforced beams, steel reinforcement is provided in
(A) tension zone
(B) compressive zone
(C) both tensile and compressive zones
(D) neutral zone
b) If the depth of actual neutral axis in a beam is more than the depth of critical neutral axis, then the beam is called
(A) balanced beam
(B) under-reinforced beam
(C) over-reinforced beam
(D) none of the above
c) The minimum cover in a slab should neither be less than the diameter of bar nor less than
(A) 10 mm
(B) 15 mm
(C) 25 mm
(D) 13 mm
d) For a longitudinal reinforcing bar in a column, the minimum cover shall neither be less than the diameter of bar nor less than
(A) 15 mm
(B) 25 mm
(C) 30 mm
(D) 40 mm
e) The slab is designed as one way if the ratio of long span to short span is
(A) less than 1
(B) between 1 and 1.5
(C) between 1.5 and 2
(D) greater than 2
f) The minimum diameter of longitudinal bars in a column is
(A) 6 mm
(B) 8 mm
(C) 12 mm
(D) 16 mm
g) The modulus of rupture of concrete in terms of its characteristic cube compressive strength $\left(F_{C K}\right)$ in MPa according to IS : 456-2000 is
(A) $5000 F_{C K}$
(B) $0.7 F_{C K}$
(C) $5000 \sqrt{F_{C K}}$
(D) $0.7 \sqrt{F_{C K}}$
h) For limit state of collapse , the partial safety factors recommended by IS:4562000 for estimating the design strength of concrete and reinforcing steel are respectively
(A) 1.5 and 1.15
(B) 1.15 and 1.5
(C) 1.0 and 1.0
(D) 1.5 and 1.0
i) In the design of a reinforced concrete beam the requirement for bond is not getting satisfied. The economical option to satisfy the requirement for bond is by (A) Bundling of bars

(B) Providing smaller diameter bars more in number
(C) Providing larger diameter bars less in number
(D) Providing same diameter bars more in number
j) In a simply supported reinforced concrete beam, the reinforcement is placed
(A) below the neutral axis
(A) above the neutral axis
(C) at the neutral axis
(D) any one of these
k) In a singly reinforced beam, the effective depth is measured from the compression edge to the
(A) neutral axis of the beam
(B) tensile edge
(C) centre of tensile reinforcement
(D) none of these
I) In a beam section, if the steel reinforcement is of such a magnitude that the
permissible stresses in concrete and steel are developed simultaneously, the section is known as
(A) balanced section
(B) critical section
(C) economical section
(D) any one of these
m) The section in which concrete is not fully stressed to its permissible value when stress in steel reaches its maximum value, is called
(A) under reinforced section
(B) over reinforced section
(C) critical section
(D) balanced section
n) In a reinforced concrete beam, the shear stress distribution above the neutral axis follows a
(A) straight line
(B) circular curve
(D) parabolic curve
(D) none of these

Attempt any four questions from Q-2 to Q-8

Q-3 Attempt all questions
(a) The details of a column and pad footing are as under.
(a) A rectangular column $300 \mathrm{~mm} \times 500 \mathrm{~mm}$ is reinforced with $4-25 \mathrm{~mm}$ diameter + $4-20 \mathrm{~mm}$ diameter longitudinal bars. The effective length of column is 3.6 m . Deign the lateral ties for column. Also calculate the load carrying capacity for column, using M-20 concrete and HYSD bars of grade Fe- 415.
(b) Design a square footing for an isolated column $500 \mathrm{~mm} \times 500 \mathrm{~mm}$ size carrying an axial load of 1600 kN . Safe bearing capacity of soil is $200 \mathrm{kN} / \mathrm{m}^{2}$. Use M-20 concrete and steel grade Fe-415.
Design only for following:
(a) Size of footing
(b) Net upward pressure (p)
(c) Bending moment $\left(\mathrm{M}_{\mathrm{u}}\right)$
(d) Depth of footing.
(i) Size of column $400 \mathrm{~mm} \times 400 \mathrm{~mm}$
(ii) Size of footing $2500 \mathrm{~mm} \times 2500 \mathrm{~mm} \times 550 \mathrm{~mm}$
(iii) Factor soil pressure $120 \mathrm{kN} / \mathrm{m}^{2}$
(iv) Reinforcement 15 Nos. 12 mm diameter bars both ways.
(v) Effective cover 50 mm
(vi) Concrete M-20 and steel $\mathrm{Fe}-415$ are used.

Check the footing in one way shear.
(b) Design a singly R.C. beam of rectangular with effective depth equal to twice the width of the beam to resist a factored moment $120 \mathrm{kN} . \mathrm{m}$. Use M-20 and Fe-415. Attempt all questions
(a) Explain requirements of reinforcement for column.
(b) Check for the control of deflection for a simply supported beam of span $6 \mathrm{~m}, 300$
$\mathrm{mm} \times 500 \mathrm{~mm}$ effective is reinforced with 4 Nos. of 20 mm diameter bar with 2 Nos. of 10 mm diameter anchor bar. $f_{\text {ck }}-20$ and $f_{\mathrm{y}}-415$.
(c) Define following terms:
(i) Limit state
(ii) Characteristics strength
(iii) Partial safety factor
(iv) Design load

Attempt all questions
(a) Differentiate between singly and doubly reinforced beam and also explain necessity of doubly reinforced beam.
(b) Design for tensile and compressive reinforcement for a R.C.C. beam 250 mm wide and 500 mm deep with concrete grade M-20 and steel Fe-415 at effective cover of 50 mm on both sides to resist factored moment of $300 \mathrm{kN} . \mathrm{m}$.
Attempt all questions
(a) An R.C. beam, $230 \mathrm{~mm} \times 400 \mathrm{~mm}$ is reinforced by 16 mm diameter bars. If its clear span is 3.6 m and support width is 300 mm . Find the followings with reference to IS : 456-2000.
(i) Find side and end covers for reinforcement.
(ii) Find effective span of the R.C. beam.

Use M-20 concrete and $\mathrm{Fe}-415$ steel
(b) Differentiate between under reinforced section and over reinforced section and
also explain maximum percentage of tension reinforcement.
Design the slab for the room for office building $3.2 \mathrm{~m} \times 9.2 \mathrm{~m}$. The slab is resting on 300 mm thick wall and resting live load of $2.5 \mathrm{kN} / \mathrm{m}^{2}$. Use M-20 concrete mix and $f_{\mathrm{y}}-415$ as steel as reinforcement. Check the slab for control of deflection and cracking. Show the reinforcement details.
Design a simply supported two-way slab of $3.0 \mathrm{~m} \times 3.0 \mathrm{~m}$ clear span supported on 300 mm thick walls on four sides.
Live load $=3 \mathrm{kN} / \mathrm{m}^{2}$
floor finish $=1 \mathrm{kN} / \mathrm{m}^{2}$
M-20 concrete and $\mathrm{Fe}-415$ grade steel.
Comers are not held down.
Draw reinforcement details.

Q-1 Attempt the following questions:

a) સીગલી રેઈનફોર્સ બીમમાં સ્ટીલ રે ઈનફોર્સમેન્ટ કયા મુકવામાં આવે છે.
(A) tension zone
(B) compressive zone
(C) both tensile and compressive zones
(D) neutral zone
b) જો બીમમાં એકચ્યુલ ન્યુટ્રલ અક્ષીસની ડેપ્થ ક્રીટીકલ ન્યુટ્રલ અક્ષીસની ડેપ્થ કરતા વધારે

હોય તો તેને કેવો બીમ કહેવાય.
(A) balanced beam
(B) under-reinforced beam
(C) over-reinforced beam
(D) none of the above
c) સ્લ્લમાં લધુતમ કવર રેઈનફોર્સમેટના વ્યાસ કરતા અને કરતા ઓછુ હોવુ જોઈએ.
(A) 10 mm
(B) 15 mm
(C) 25 mm
(D) 13 mm
d) કોલમમાં લોંગીટયુજીનલ રેઈનફોર્સ માટે લઘુતમ કવર સળીયાના વ્યાસ કરતા અને કરતા ઓછુ ના હોવુ જોર્ઈએ.
(A) 15 mm
(B) 25 mm
(C) 30 mm
(D) 40 mm
e) વનવે સ્લેબ ડીઝાઈન કરવા માટે લાંબા ગાળા અને ટુકાગાળાનો ગુણોતર કેટલો હોવો જોઈએ.
(A) less than 1 (B) between 1 and 1.5 (C) between 1.5 and 2 (D) greater than 2
f) કોલમમાં લોંગીટયુજનનલ સળીયાનો લધુતમ વ્યાસ કેટલો હોવો જોઈએ.
(A) 6 mm
(B) 8 mm
(C) 12 mm
(D) 16 mm
g) IS : 456-2000 મુજબ, કોકીટની મોડયુલસ ઓફ ૨પ્ચર ($F_{C K}$) ના સ્વરૂપમાં અને in MPa યુનિટમાં કેટલી થશે.
(A) $5000 F_{C K}$
(B) $0.7 F_{C K}$
(C) $5000 \sqrt{F_{C K}}$
(D) $0.7 \sqrt{F_{C K}}$
h) લીમીટ સ્ટેટ ઓફ કોલેપ્સ માટે IS:456-2000 મુજબ પાર્શીયલ સેફટી ફેકટર કોકીટ અને રે ઈનફોર્સીગ સ્ટીલની ડીઝાઈન સ્ટ્રેન્થ એસ્ટીમેન્ટ કરવા માટે અનુક્રમે કેટલો સુચવેલ છે.
(A) 1.5 and 1.15
(B) 1.15 and 1.5
(C) 1.0 and 1.0
(D) 1.5 and 1.0
i) રેઈનફોર્સ કોક્રીટ બીમની ડીઝાઈનમાં જો બોન્ડ માટેની જરરીયાત ન સંતોષાય તો બોન્ડ માટેની જરૂરીયાતને સંતોષવા માટેનો ઈકોનોમીકલ ઓપશન જાાવો
(A) Bundling of bars
(B) Providing smaller diameter bars more in number
(C) Providing larger diameter bars less in number
(D) Providing same diameter bars more in number
j) સીમ્પલી સર્પોટેડ રેઈનોફોર્સ કોક્રીટ બીમમાં રે ઈનફોર્સમેટં કયા મુકવામાં આવે છે.
(A) below the neutral axis
(A) above the neutral axis
(C) at the neutral axis
(D) any one of these
(C) critical section
(D) balanced section
n) રે ઈનફોર્સ કોકીટ બીમમાં ન્યુટ્રલ અક્ષીસની ઉપ૨ શીયર સ્ટ્રેસનું વિતરણ કયા આકારમાં દર્શાવામાં આવે છે.?
(A) straight line
(B) circular curve
(D) parabolic curve
(D) none of these

Attempt any four questions from $\mathbf{Q - 2}$ to $\mathbf{Q - 8}$

Q-5 Attempt all questions

(a) સીગલ અને ડબલી રેઈનફોર્સ બીમનો તફાવત આપો અને ડબલી રેઈનફોર્સ બીમની જરરીયાત સમજાવો.
(b) 250 mm પહોળા અને 500 mm જાડા R.C.C બીમને ટેન્સાઈલ અને કંમ્પ્રેસીવ રેઈનફોર્સ ડીઝાઈન કરો. કોક્રીટ ગ્રેડ M-20 અને સ્ટીલ Fe-415 બંન્ને બાજુ ઈફેકટીવ કવર 50 mm
(a) એક લંબચોરસ કોલમ $300 \mathrm{~mm} x 500 \mathrm{~mm}$ જે $4-25 \mathrm{~mm}+4-20 \mathrm{~mm}$ વ્યાસના લોગીટુજીકલ સળીયાથી રેઈનફોર્સ કરેલ છે. કોલમની ઈફેકટીવ લેબાઈ 3.6 m . છે. કોલમ માટે ટાઈ ડીઝાઈન કરો અને કોલમની લોડ કેરીગ કેપીસીટી શોધો. M-20 ક્રોકીટ અને Fe415 ગ્રેડના HYSD બારનો ઉપયોગ કરો.
(b) આઈસોલેટેડ કોલમ $500 \mathrm{~mm} \times 500 \mathrm{~mm}$ માટે ચોરસ ફુંટીગ ડીઝાઈન કરો જેને 1600 kN . નો એક્ષીયલ ભાર ધારણ કરેલ છે. સોઈલની સેઈફ બેરીગ કેપેસીટી $200 \mathrm{kN} / \mathrm{m}^{2}$ છે M-20 ક્રોકીટ $\mathrm{Fe}-415$ સ્ટીલ ગ્રેડ વાપરો નીચેના માટે ડીઝાઈન કરો.
(a) કુટીગની સાઈઝ
(b) નેટ અપવર્ડ પ્રેસર
(c) બેન્ડીગ મોમેન્ટ $\left(\mathrm{M}_{\mathrm{u}}\right)$
(d) કુટીગની જાડાઈ

Attempt all questions

(a) કોલમ અને પેડ કુટીગની વિગત નીચે દર્શાવેલ છે.
(i) કોલમની સાઈઝ 400 mm x 400 mm
(ii) કુટીગની સાઈઝ $2500 \mathrm{~mm} \times 2500 \mathrm{~mm} \times 550 \mathrm{~mm}$
(iii) ફેકટર સોઈલ પ્રેસર $120 \mathrm{kN} / \mathrm{m}^{2}$
(iv) રેઈનફોર્સમેન્ટ બોથ વે 15 સળીયા 12 mm વ્યાસના.
(v) ઈફેકટીવ કવર 50 mm
(vi) કોક્રીટ M-20 અને સ્ટીલ Fe-415 નો ઉપયોગ કરો

કુટીગને વન-વે શીયર માટે તપાસો.
(b) લંબચોરસ R.C. બીમ ડીઝાઈન કરો કે જેની ઈફેકટીવ ડેપ્થ તેની પહોળાઈ કરતા ડબલ રાખવામાં આવેલ છે. ફેકટર મોમેન્ટ $120 \mathrm{kN.m} .\mathrm{ને} \mathrm{અવરોધે} \mathrm{છે}. \mathrm{M-20} \mathrm{અને} \mathrm{Fe-415} \mathrm{નો}$ ઉપયોગ કરો.
(a) કોલમ માટે રેઈનફોર્સમેન્ટની જરરીયાત સમજાવો.
(b) 6 m , લંબાઈના સાદી રીતે ટેકવેલ બીમ ને કંટ્રોલ ઓફ ડીફલેકરન માટે ચકાસો કે જેનો ઈફેકટીવ સેકશન 300 mm x 500 mm છે. 20 mm વ્યાસના 4 સળીયા થી ૨. ઈનફોર્સ કરેલ છે તથા 10 mm ના 2 સળીયા એન્કર બાર રાખેલ છે. $f_{c \mathrm{ck}}-20$ અને $f_{\mathrm{y}}-415$.
(c) વ્યાખ્યા આપો.
(i) લિમિટ સ્ટેટ
(ii) કરેકટરીસ્ટીક સ્ટ્રેન્થ
(iii) પાર્શીયલ સેફટી ફેકટર
(iv) ડીઝાઈન લોડ

ફેકટર મોમેન્ટ $300 \mathrm{kN.m}$ અવરોઘે છે.

Q-7
(b) અંડર રેઈનફોર્સ સેકશન અને ઓવર રેઈનફોર્સ સેકશન વચ્ચેનો તફાવત આપો અને 07 ટેન્શન રે ઈનફોર્સમેન્ટની મહતમ ટકાવારી સમજાવો. ઓફીસ બીસ્ડીગ 3.2 m x 9.2 m . ના રમ માટે સ્લેબને ડીઝાઈન કરો. સ્લેબને 300 mm જાડી દિવાલ પર ટેકવલ છે તથા $2.5 \mathrm{kN} / \mathrm{m}^{2}$ ના લાઈવ લોડ ને અવરોઘે છે M-20 કોકીટ મીક્ષ અને f_{y} - 415 સ્ટીલ રે ઈનફોર્સમેન્ટનો ઉપયોગ કરો.
કંટ્રોલ ઓફ ડીફલેકશન અને ક્કીગ માટે સ્લેબને ચકાશો. રે ઈનફોર્સમેન્ટની વિગત દર્શાવો.
Q-8
Attempt all questions
(a) R.C. બીમ, $230 \mathrm{~mm} \times 400 \mathrm{~mm}$ કે જેને 16 mm વ્યાસના સળીયાથી રે ઈનફોર્સ કરેલ છે. જો કલીઅર સ્થાન 3.6 m અને ટેકાની પહોળાઈ 300 mm . હોય તો IS : 456-2000 ના સંદર્ભમાં નીચેનાની કિમત શોઘો.
(i) રે ઈનફોર્સમેન્ટ માટે બાજુના અને છેડાના કવર શોઘો.
(ii) RC બીમનો ઈફેકટીવ સ્થાન શોધો.

Use M-20 concrete and Fe-415 steel
3.0 m x 3.0 m ના કલીઅર સ્થાન ધરાવતા સાદી રીતે ટેકવેલા ટુ-વે સ્લેબને ડીઝાઈન કરો. સ્લેબને ચારેય બાજુથી 300 mm જાડી દિવાલ પર ટેકવેલ છે.
લાઈવ લોડ $=3 \mathrm{kN} / \mathrm{m}^{2}$
ફલોર ફીનીશ = $1 \mathrm{kN} / \mathrm{m}^{2}$
M-20 કોક્કીટ અને Fe-415 ગ્રેડ સ્ટીલ રેઈનફોર્સમેન્ટની વિગત દર્શાવો.

